
Small Angle Scattering (SAS)

•what is SAS & what can it measure?
• how is it measured?
• sample considerations
• data analysis



Reference Texts
• The SANS Toolbox, B. Hammouda, NIST (available as pdf: 

http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf)

• Structure Analysis by SAXS & SANS, L.A. Fegin & D.I. Svergun (1987) 
(available as pdf: http://www.embl-
hamburg.de/biosaxs/reprints/feigin_svergun_1987.pdf)

• Small Angle X-ray Scattering, eds O. Glatter & O. Kratky (1982) 
(available as pdf from web archives)

http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
http://www.embl-hamburg.de/biosaxs/reprints/feigin_svergun_1987.pdf


What is SAS?
• Coherent, elastic scattering of radiation at small angles –

close to the straight-through beam
• Incoherent scattering = background

2θ

sample
detector

• Typically 0.3 < 2θ < 5° or Q < 0.5 Å-1
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λ
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Size Range Comparisons
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SAS Instruments
So

ur
ce

collimation
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sample

detector

• Neutrons/X-rays must be parallel to each other; “collimated”
• Slit defines shape of beam (circle, square, slit)
• Distance from sample to detector & wavelength determines 

size range measured
 Tof – wide simultaneous Q range, lower flux
 Reactor – smaller Q range, higher flux at short sample-detector 

distances

beamstop
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• eg diblock copolymers
• Circular 1D average
 take average over ring
 each ring corresponds to one data point in reduced 1D SAXS 

data

 

Scattering Patterns: From detector to 1D



SAS Measurements
• Observed intensity:

where:
J0(λ) = flux incident on sample
∆Ω = angle covered by detector
η = detector efficiency
T = sample transmission
V = volume of sample in beam

I(Q) = differential cross section
⇒ contains information about sample

)()()(),( 0 QIVTJJ ληλθλ ∆Ω=

Can measure all of 
these
⇒ Used to correct 

data during data 
reduction



Scattering from Large Structures
• Neutron/X-ray wavelength λ ≈ space between atoms in crystal 

⇒ bounce off layers of atoms like light off a mirror
⇒ see diffraction peaks at high angles (correspond to atomic 

positions)
• BUT for larger objects, sees average structure

• large structures scatter 
at small angles

⇒ for techniques using small 
angles use material properties 
rather than atomic properties



How Big is “Large”?
• Consider H2O:  volume of one molecule = 30Å2

radius of one molecule = 2 Å

⇒ for distances > ~5 molecules, see only average density
Q = 2π/d   

• so can use material properties for Q < ~0.6 Å-1

R

R

density

ρav

R=10 Å



How X-rays & neutrons are scattered 

Neutrons

X-ray

X-ray

2θ

2θ = 90°

2θ = 0°

• atomic scattering length = b

• b = measure of how much a neutron/X-ray interacts with a 
nucleus/atom  (units: 10-15 m or 10-13 cm)

• b is different for coherent and incoherent scattering
- different nuclei have different b



Neutron vs X-ray Scattering
• Neutrons more penetrating than X-rays (interact less with matter)
• Interaction of neutrons with nuclei depends on isotope
• Interaction of X-rays just depends on number of electrons
• b = scattering length (units Å or cm, normally)
• Scattered intensity measured depends on which isotopes are in 

sample for neutrons, only on elements for X-rays

X-rays neutrons



Scattered Intensity
• observed scattered intensity is Fourier Transform of real-space 

shapes

where: Np = number of particles
Vp = volume of particle
ρ = scattering length density (of particle/solvent)
B = background 
F(Q) = form factor
S(Q) = structure factor

• Sample considerations… (thickness, cell material, absorption etc)

BQSQFVNQI sppp +−= )()()()( 22 ρρ



Scattering Length Density
• scattering from an object/material depends on how many 

electrons or nuclei there are in a unit volume
• use scattering length density, Nb, to calculate scattering from 

molecules:
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where: bi = scattering length for element, cm
(for X-rays b = 2.81×10-13 × no. of e- in atom)

ρ = density of compound, g cm-3

NA = Avogadro’s number, mol-1
MW = molecular weight, g mol-1
N  = number density of atoms in material, cm-3

NB/ if feeling lazy see: www.ncnr.nist.gov/resources/sldcalc.html

Units of Nb:  cm-2 or Å-2 



Important Scattering Length Densities

These have similar number densities of atoms ie number of atoms in 1 cm3:
NH2O = 6.022×1023 atoms mol-1×1.0 g cm-3

18 g mol-1

NH2O =3.35×1022 atoms cm-3

D2ObH = -3.742×10-13 cm bD = 6.674×10-13 cm
bO = 5.805×10-13 cm bO = 5.805×10-13 cm
MWH2O = 2H+O = 20 g mol-1 MWD2O = 2D+O = 18 g mol-1

ρH2O = 1.0 g cm-3 ρD2O = 1.1 g cm-3

BUT very different scattering length densities!
NbH2O = (2bH+bO)×NH2O

NbH2O = -0.562 ×1010 cm-2

ND2O =3.31×1022 atoms cm-3

H2O

NbD2O = (2bD+bO)×ND2O

= 6.34 ×1010 cm-2

𝑁𝑁𝑁𝑁 = 𝑁𝑁�
𝑖𝑖

𝑁𝑁𝑖𝑖



Contrast & Contrast Matching
• Both tubes contain pyrex fibers + borosilicate beads 

+ solvent.

(A) solvent refractive index matched to pyrex fibres
(B) solvent index different from both beads & fibers – scattering 

from fibers  dominates

2)()( spQI ρρ −∝

Similarly, there must be a 
difference between object and 
surrounding to measure 
scattering



Babinet’s Principle

• These two structures give the same scattering

• Contrast is relative
• Loss of phase information i.e.: is ρ1 > ρ2?
• Very important in multi-phase systems
 Solve by use of multiple contrasts using SANS! 

(for X-rays = anomalous scattering)

2)()( spQI ρρ −∝



Scattering ∝ “Contrast”
• objects and solvent have 

different scattering length 
densities (SLD)

• Intensity ∝ SLD difference
between solvent & particle

• in water for neutrons can 
manipulate solvent ρ by using 
mixture of H2O and D2O

• When solvent and object have 
same SLD they are said to be 
“contrast matched”

Example: silica spheres in water

95% D2O in H2O

59% D2O in H2O

30% D2O in H2O



Predicting Contrast Match Point
• By calculating the SLD can predict %D2O where 

the scattering signal will be zero
• BUT if have exchangeable hydrogens in the 

structure the SLD will vary with %D2O



Neutron “Contrast” Series
• intensity of scattering depends on difference between 

particle and solution.
I(Q)∝ (ρparticle - ρsolution)2

• measure scattering at a series of solution contrasts
• extrapolate scattering to Q = 0 and measure I0



Contrast Match Point
• Plot as √I0 vs [D2O]

• Place where line cuts zero is where the solution has the 
same scattering length density as the particle
⇒ contrast matched

• Can use this to find the density of the particle



Neutron “Contrast” for Complex Objects
• contrast matching allows us to “remove” scattering 

from parts of an object
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“shell-contrast”
⇒ see only core

“core-contrast”
⇒ see only shell



Using Contrast in SANS
• Deuteration can highlight structure in low contrast 

systems for SANS measurements.

Bruce; Cabry; Canongia Lopes; Costen; D’Andrea; Grillo; Marshall; McKendrick; Minton; Purcell; Rogers; Slattery; Shimizu; 
Smoll; Tesa-Serrate; J. Phys. Chem. B 2017, 121, 6002-6020. DOI: 10.1021/acs.jpcb.7b01654,  CC-BY3.0

• Solutions of [dC12mim]+

in [C2mim]+[Tf2N]-

SANS from D22, ILL



Segregation in Ionic Liquids
• Deuterated C12 chains on [C12mim]+ allowed mesostructure 

with changing [C12mim]+ concentration to be determined
 Low concentrations, fitted to elliptical model,
 High concentrations, fitted to bicontinuous network 

Nanosegregation between the polar 
network (red/blue mesh) and 
nonpolar domains (grey and green 
beads) in [C2mim]1–x[C12mim]x[Tf2N] 
(a) x = 0.04, (b) x = 0.24, (c) x = 0.52, 
and (d) x = 0.87. 

Bruce; Cabry; Canongia Lopes; Costen; D’Andrea; Grillo; Marshall; McKendrick; Minton; Purcell; Rogers; Slattery; Shimizu; 
Smoll; Tesa-Serrate; J. Phys. Chem. B 2017, 121, 6002-6020. DOI: 10.1021/acs.jpcb.7b01654,  CC-BY3.0

 SANS fitting compared to 
molecular dynamics simulations



Scattered Intensity
• For concentrated solutions:

where: Np = number of particles
Vp = volume of particle
ρ = scattering length density (of particle/solvent)
B = background 
F(Q) = form factor
S(Q) = structure factor

BQSQFVNQI sppp +−= )()()()( 22 ρρ

Form Factor = scattering from within same particle
⇒ depends on particle shape

Structure Factor = scattering from different particles
⇒ depends on interactions between particles



Solution of particles

=

Solution
I(c,Q)

Form factor
of the particle

Motif 
(protein, micelle, nanoparticle)

F(0,Q)

Structure factor
of the particle

Lattice
S(c,Q)

*

*

c = concentration



SAS Data Analysis

• Simple but not very accurate:
 Porod slopes
 Guinier analysis

• More helpful, but more complex:
 fitting models to data

• Most complex (need more data):
 fitting protein structures using crystal structures
 monte carlo/simulated annealing methods



• Scattered intensity per unit volume of sample
 arises from spatial distribution of regions 

with different scattering length 
density

• For identical particles:

V, ρs

Vp, ρp

Particle form factor, F(Q)

Scattering from Independent Particles



Dilute Randomly Ordered Uniform 
Particles

𝛾𝛾(𝑟𝑟) = correlation function within particle
P(r)=4πr2γ(r) is the probability of finding two points in the particle separated by r



Porod’s Law
• Start with form factor:

• Now consider radial pair correlation function for sphere, with 
sharp edges, radius R:

• Integrate by parts three times:

R



Porod Scattering
• Slope at high q the same
• But point where slope changes depends on particle dimensions

A

B

10% red / 90% blue in each square



Fractal Systems
• Fractals are systems that are self-similar as you change scale

• For a Mass Fractal the number of particles within a sphere radius 
R is proportional to RD where D = fractal dimension

• Thus:
4πR2γ(R)dR = number of particles between distance R and R+dR

=  cRD-1dR

Diffusion-limited aggregation in 3 dimensions 
(Paul Bourke, 
http://local.wasp.uwa.edu.au/~pbourke/fractals/dla3d/)



Fractal Systems Continued…
•

First stages of Koch (triangle) surface
(Robert Dickau)

Paul Bourke



The SANS Toolbox. Boualem Hammouda, NIST
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Porod Slopes & Structures

eg Silica Gel:
continuum network surface

cluster particle atoms

ln(Q)

Q = 1/R

I ∝ Q-D

Q = 1/r

I ∝ Q-Ds-6
ln
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ity

) 

Si

Si

R
r

NB/ SAXS data, 
seldom measure such 
a wide Q range in 
SANS



Form Factors
• Form factors are the sum of scattering from every point inside a 

particle

• Simplify to the integral
• Scattering pattern calculated from the Fourier transform of the
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n real-space density 
distribution

• Pattern for most 
shapes must be 
solved analytically

• Some simple 
shapes can be 
solved directly



Simple Analysis - Guinier Approximation
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Rp = radius of sphere

• Assume particle is a sphere in dilute solution

• Measure scattering at very low angles so that
RgQ ≲ 1

• Use mathematical expansion of F(Q)

• Write in logarithmic form 



Guinier Plots
• at low concentrations and small values of Q, can 

write intensity as:

• so plot of ln(I) against Q2 will have slope =
• only valid for RgQ ≤ 1

Radius of Gyration – depends on particle shape

• Sphere
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What do we mean by “Rg”?
Radius of gyration:
Rg

2 is the average squared 
distance of the scatterers 
from the centre of the 
object

Rg
2 =(12+ 12+ 12+ 22+ 22+ 32 )/6=20/6

Rg=√3.333 = 1.82

2

2
1
1 1

3

Radius of Gyration – depends on particle shape

• Sphere

• Ellipse

• Cylinder
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Slope = = -45.1 Å  

so:   Rg = 11.6 Å

Guinier Plot Example
• Polymerised surfactant micelles 
Large Scale Structures, ISIS Annual Report, 1999-2000 http://www.isis.rl.ac.uk/isis2000/science/largescale.htm

Q (Å-1) Q2 (Å-2)
×10-3

Intensity 
(cm-1)

ln(intensity)

0.032 1.03 0.127 -2.064

0.050 2.51 0.113 -2.183

0.070 4.87 0.106 -2.245

0.081 6.56 0.096 -2.341

0.095 9.03 0.087 -2.441

0.104 10.81 0.080 -2.528

0.115 13.23 0.073 -2.618

0.123 15.13 0.063 -2.769

0.129 16.64 0.062 -2.789 3

2
gR−

Check validity: Rg×Qmax = 11.6×0.095 = 1.1     OK



More Complex: Fitting Scattering
• observed scattered intensity is Fourier Transform of real-space 

shapes

where: Np = number of particles
Vp = volume of particle
ρ = scattering length density (of particle/solvent)
B = background 
F(Q) = form factor
S(Q) = structure factor

Form Factor = scattering from within same particle
⇒ depends on particle shape

Structure Factor = scattering from different particles
⇒ depends on interactions between particles

BQSQFVNQI sppp +−= )()()()( 22 ρρ



Form Factors
• depend on shape of particle
• for dilute solutions S(Q) = 1 and so I(Q) ∝ F(Q)
• General form of F(Q):

where 
r = shape parameter 
eg radius of gyration



Polydispersity
• “smears out” sharp features in pattern
• “smearing” can also be due to poor Q resolution or 

beam shape (correct for this during data reduction)



Au Nanorods
Fitted to charged cylinders
• Radius 104Å
• Length 307Å
Clearly need to incorporate 

polydispersity!

Fitted to charged cylinders
• Radius 80Å
• Length 190Å
• Polydispersity 0.29



Structure Factors
• for dilute solutions S(Q) = 1
• particle interactions will affect the way they are 

distributed in space ⇒ changes scattering
• for charged spheres:

Average distance between nearest 
neighbours relatively constant 

= “correlation distance”

Position of first 
maximum related to 
correlation distance



Concentration effects



Combining F(Q) & S(Q)
• In most cases when fitting will need to include both form and 

structure factor
• Can tell by taking concentration series
 if shape of scattering doesn’t change when sample is 

diluted then S(Q) = 1

• Polymer-lipid discs
• Normalised for 

concentration
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Combining F(Q) & S(Q)
• Use computer programs to combine form factor and structure 

factor:

• Fit using ellipse + structure factor for charged objects which 
repel each other ⇒ many parameters!

• Use three contrasts to help pin down shape and size 
accurately

17Å

31Å

+ + +
+ +

+

+
+ + +

+ + +
+

+
+

+

+
+

+

+ +

+ +

+
+

Brennan, Roser, Mann, Edler, 
Chem. Mater. 2002, 14, 4292



Effects of Sample Alignment
• Scattering no longer circular
• Form areas of high intensity perpendicular to 

direction of alignment

y

x

Qy

Qx

Examples: shear, flow
magnetic alignment



Isotropic vs Nonisotropic Structures
No shear
⇒Isotropic solution
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Shear + higher T
⇒ isotropic again
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⇒ aligned micelles
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Edler, Reynolds, Brown, Slawecki, White, J. Chem. Soc., Faraday Trans. 1998, 94(9) 1287



Fourier Inversion Techniques
• Scattering from dilute, uniform, independent particles
• Assuming i) system is isotropic, then 

ii) no long range order, so no correlations 
between two widely separated particles

• If can measure I(Q) over big enough range can take inverse 
Fourier transform to find P(r):

P(r)=4πr2γ(r) = 

𝛾𝛾(𝑟𝑟) = correlation function
P(r)=4πr2γ(r) is the probability of finding two points in the particle separated by r



P(r) for Simple Shapes
• Note: P(r) can be 

ambiguous if have 
polydisperse
samples

Aggregates = sum of 
separate shapes



Free SANS Fitting Software

SASView software
• Designed for fitting neutron data but can also be 

used (with care) for X-ray data
• Available from: http://www.sasview.org/

OR library of other available software at:
http://smallangle.org/content/software

http://smallangle.org/content/software
http://www.sasview.org/
http://smallangle.org/content/software
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